L'arca olearia
La contaminazione da metalli pesanti e ftalati in diversi packaging dell'olio di oliva

Gli ftalati, come plastificanti, migrano facilmente quando il materiale a contatto è alimentare grasso, come l'olio di oliva, a causa della natura lipofila degli ftalati. Un confronto tra vetro, polietilene tereftalato, lattina di stagno, porcellana, alluminio e cartone
09 maggio 2025 | 18:45 | R. T.
Secondo l’Organizzazione delle Nazioni Unite per l’Alimentazione e l’Agricoltura, la sicurezza alimentare è definita come “la garanzia che il cibo non causerà danni al consumatore quando sarà preparato e / o mangiato in base all’uso previsto”. Questa definizione sottolinea la necessità per il cibo di essere sicuri per il consumo durante l'intero viaggio, dalla produzione al consumo (Codex Alimentarius Commission 2020). Garantire la disponibilità di cibo sicuro è un requisito fondamentale e cruciale per l'esistenza umana. Identificare i contaminanti, sia che siano accidentali o intenzionali, in quanto ciò svolge un ruolo fondamentale nel mantenimento della sicurezza alimentare.
Nel caso degli oli di oliva, uno studio spagnolo si è concentrato sull'indagine di due contaminanti comunemente presenti negli oli d'oliva che sono: metalli pesanti e ftalati.
Gli esteri dell'acido fitatilico (PAE), comunemente noti come ftalati prodotti dall'anidride ftalicante esterificante con etanolo, sono sostanze chimiche ampiamente diffuse in molte applicazioni industriali come plastificanti che vengono aggiunti alla plastica per dare caratteristiche di estensibilità ed elasticità.
Ci sono più di venti tipi di PAE, tra cui dimetil ftalato (DMP), diethil ftalato (DEP), ftalato di butile benzilico (BBP), dibutil ftalato (DBP), di-etilite-ftalato (DEHP), di(n-octil) ftalato (DANP), diisononil ftalato (DiNP) e diisodil. Altri PAE espressi, ad eccezione di DiNP e DiDP, sono stati segnalati come inquinanti prioritari dagli Stati Uniti. Agenzia per la protezione dell'ambiente (US EPA 2012).
Determinati dal loro peso molecolare, gli ftalati sono classificati in basso peso molecolare (LMW) e ad alto peso molecolare (HMW). Gli ftalati LMW, inclusi DMP, DEP e DiBP, sono comunemente usati come solventi, fissativi e adesivi in cosmetici e prodotti per la cura personale. Al contrario, gli ftalati HMW, come DiDP, DiNP, DEHP, DnOP e BzBP, sono ampiamente riconosciuti per il loro ruolo di plastificanti nei materiali in PVC, comprese le applicazioni negli imballaggi alimentari, pavimenti e dispositivi medici.
Gli ftalati hanno un'elevata solubilità nel grasso e nell'etanolo, ma la loro solubilità in acqua è limitata. Il DEHP, un ftalato ampiamente utilizzato e altamente inquinante, ha una solubilità in acqua di meno di 1,0 mg/dm 3 a 25 gradi. DBP, un altro inquinante comune, ha una solubilità in acqua leggermente superiore di 15,0 g/dm 3 a 25 gradi. Al contrario, la loro solubilità nei lipidi è molto più alta, il che influisce sulla loro distribuzione ambientale e sul potenziale di bioaccumulo. Gli ftalati, come plastificanti, non formano legami stabili con il polimero a cui vengono aggiunti, il che li rende suscettibili di migrazione in materiali che entrano in contatto con il polimero. Questa migrazione è particolarmente pronunciata quando il materiale a contatto è alimentare grasso a causa della natura lipofila degli ftalati. Nel caso dei contenitori di plastica, gli ftalati possono facilmente migrare dalle pareti dei contenitori di plastica agli alimenti quando esposti a condizioni ambientali come temperature elevate, ambienti acidi, esposizione alla luce solare e stoccaggio a lungo termine.
Dal 2001, le agenzie di regolamentazione in Europa, Stati Uniti, Giappone, Australia, Canada e Cina hanno imposto restrizioni o divieti ad alcuni PAE nei prodotti di consumo.
Studi epidemiologici hanno rivelato una correlazione positiva tra livelli elevati di specifici metaboliti ftalati e malattie cardiovascolari, nonché altri disturbi cardiometabolici.
D'altra parte, gli elementi pesanti sono classificati in due gruppi in base alla loro efficacia e alle proprietà inebrianti. Elementi come As, Cd, Cr, Hg e Pb sono tossici anche a basse concentrazioni. Tuttavia, elementi come Cu, Fe, Mn, Ni e Zn sono essenziali per gli organismi viventi in quantità moderate. L'assunzione insufficiente di questi elementi può causare sintomi di carenza, mentre livelli eccessivi possono portare all'avvelenamento.
La presenza di metalli pesanti nelle olive può essere attribuita a varie fonti di inquinamento, tra cui suolo, fertilizzanti, attività industriali e vicinanza alle autostrade. La contaminazione dell’olio d’oliva con metalli pesanti può verificarsi anche durante il processo di produzione e come conseguenza della sua interazione con i materiali di stoccaggio. La presenza di metalli pesanti negli oli d'oliva influisce significativamente sulla qualità del prodotto. Inoltre, il consumo di oli con alti livelli di metalli pesanti può avere un impatto negativo sulla salute umana. Vale la pena ricordare che il tasso di ossidazione negli oli è influenzato dal grado di insaturazione nelle loro catene di acidi grassi, così come dalla presenza di metalli pesanti.
Campioni di oli commerciali sono stati raccolti dal mercato spagnolo durante le campagne 2021/2022 e 2022/2023 e conservati in diversi imballaggi (vetro, polietilene tereftalato, lattina di stagno, porcellana, alluminio e cartone). Ciò è stato eseguito per stabilire la possibile influenza del materiale di imballaggio sulla presenza di composti contaminanti, PAE concretamente e metalli pesanti.
Sono stati acquistati anche oli di diverse categorie (vergine, vergine, olio d'oliva e olio di sansa di oliva).
La determinazione del contenuto di PAE ha rivelato la presenza di Di(2-etylhexyl) ftalato (DEHP), Di-isobutilftalato e Di-isononil ftalato. DEHP è stato rilevato in 6 campioni su 18, con concentrazioni che vanno da 0,1 a 0,23 mg/kg. Gli ftalati, in particolare il DEHP, erano più comunemente trovati in PET, ma anche in contenitori di vetro, porcellana e cartone.
In relazione ai metalli pesanti, il rame è stato rilevato in tutti i campioni testati, superando lo standard in campioni di extravergine in contenitori di vetro e porcellana, nonché nell’olio di sansa di oliva (in PET), con concentrazioni che variano da 0,04 a 0,18 mg/kg di olio. In particolare, gli ioni antimonio erano assenti in tutti i contenitori testati.
Potrebbero interessarti
L'arca olearia
Il sistema olivicolo e oleicolo italiano senza sostenibilità economica e ambientale

Il rischio di rincorrere il modello spagnolo nella trasformazione olearia è quello di perdere sia la sostenibilità economica, già compromessa, sia quella ambientale. Il percorso dalla qualità alla valorizzazione dei sottoprodotti secondo Maurizio Servili dell’Università di Perugia
23 maggio 2025 | 17:30 | Alberto Grimelli
L'arca olearia
L'efficacia di prodotti naturali contro la cimice asiatica che colpisce l'olivo

Dopo i suoi focolai in Nord America e in Europa, la cimice asiatica è stata controllata con fitofarmaci. Sono stati proposti metodi più sostenibili, tra cui il biocontrollo e l'uso di prodotti naturali, ma quali sono realmente efficaci?
23 maggio 2025 | 17:00
L'arca olearia
Le opinioni degli studenti universitari italiani sull’olio extravergine di oliva

Origine, designazione geografica e tracciabilità sono attributi rilevanti di qualità. Tradizione e abitudini alimentari familiari sono i più forti motori del consumo di olio extravergine di oliva
23 maggio 2025 | 16:00
L'arca olearia
Il ruolo di altitudine e temperatura sulla dinamica di popolazione della mosca dell’olivo: determinante il clima a giugno e luglio

Si stima che le infestazioni di mosca dell'olivo siano responsabili della riduzione della produzione di olio d'oliva di circa il 5-15% nella regione mediterranea. Occorre capire i potenziali sviluppi della popolazione in ragione del clima e del meteo
23 maggio 2025 | 15:00
L'arca olearia
L’uso di biostimolanti per la fertilizzazione azotata dell’olivo

L’uso di un biostimolante microbico aumenta la produzione di olio di 200 kg/ha in condizioni reali di campo e potrebbe essere un’efficace strategia complementare per ottimizzare l’uso di fertilizzanti sintetici su olivo
22 maggio 2025 | 15:00
L'arca olearia
Oligum: un innovativo chewing gum all'olio extravergine di oliva

L'italiana Monica Di Maria, dottoranda presso l'Università di Palermo, ha vinto il contest dell'Olive Oil World Congress dedicato al prodotto con l'applicazione pioneristica dell'olio extravergine di oliva
22 maggio 2025 | 13:00